МАТРИЦА ЛИНЕЙНОГО ОПЕРАТОРА

 

ОГЛАВЛЕНИЕ ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ ПОЛЕЗНЫЕ ССЫЛКИ

Высшая математика

  Линейная алгебра

  Матрицы и определители

  Линейные пространства

  Евклидовы пространства

  Линейные операторы

 Определение линейного оператора

 Действия с операторами

 Матрица линейного оператора

 Собственные значения и собственные векторы линейного оператора

 Свойства собственных векторов линейного оператора

 Характеристический многочлен

  Системы линейных уравнений

  Квадратичные формы

  Численные методы линейной алгебры

Линейный оператор A действует из n-мерного линейного пространства X в m-мерное линейное пространство Y .

В этих пространствах определены базисы e = {e1, ..., en} и f = {f1, ..., fm}.

Пусть A(ei ) = a1i·f1 + a2i·f2 + ...+ ami·fm — разложение образа i-го базисного вектора базиса e пространства X по базису f пространства Y, i = 1, 2, ..., n.

Матрицей линейного оператора в базисах e, f называется матрица A, столбцами которой являются координаты образов базисных векторов базиса e в базисе f , A = {aij}= {A(ej )i}:

Координаты образа y = A(x) и прообраза x связаны соотношеннием:

y = A· x,


 

Подробнее Примеры Решить свою задачу
© МЭИ (ТУ) 2007