ОРТОНОРМИРОВАННЫЙ БАЗИС

 

ОГЛАВЛЕНИЕ ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ ПОЛЕЗНЫЕ ССЫЛКИ

Высшая математика

  Линейная алгебра

  Матрицы и определители

  Линейные пространства

  Евклидовы пространства

 Определение евклидова пространства

 Свойства скалярного произведения

 Неравенство Коши-Буняковского

 Измерения в линейном пространстве

 Ортонормированные системы векторов

 Ортонормированный базис

 Скалярное произведение в координатах

 Полезные соотношения

 Ортогональные подпространства

 Ортогональные матрицы

  Линейные операторы

  Системы линейных уравнений

  Квадратичные формы

  Численные методы линейной алгебры

  Ортонормированная система, состоящая из n векторов n-мерного евклидова пространства, образует базис этого пространства. Такой базис называется ортонормированным базисом.

Если e1, e2, ..., en ортонормированный базис n-мерного евклидова пространства и

x = x1e1 + x2e2 + ... + xnen — разложение вектора x по этому базису, то координаты xi вектора x в ортонормированном базисе вычисляются по формулам xi =(x, ei), i = 1, 2, ..., n.

Подробнее Примеры  
© МЭИ (ТУ) 2007