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Synopsis

The history of contemporary mathematical education is the history of a struggle
against computers and IT. As a result specially selected simplified math prob-
lems are used while teaching. Just as it was a hundred years ago, contemporary
students are forced to memorize a lot of rules and theorems in order to solve
math problems. But we know that today they can get the same results using
simple computer calculations. Information technologies can (and in this paper we
argue that they should) change the traditional methods of solving mathematical
problems. Here we share some simple problems that helped engineering students
learn the basics of mathematics and computer science and even enjoy the learning
process. In particular we point out that the ability to visualize solutions is very
important in most contexts, and modern mathematical software packages offer
users convenient and simple tools of visualization and even animation. Includ-
ing them on our pedagogical team, we can significantly increase our students’
understanding of the basic concepts and theorems of mathematics.

1. Digital technology

The use of digital technologies to assess the knowledge has long been
recognized as effective, despite the fact that it has its own peculiarities. But
to convince teachers to use mathematical packages in the practical classes in
mathematics is not an easy task [16, 17]. But we will try to do it.
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The history of contemporary mathematical education in schools and uni-
versities, among other things, is the history of a struggle against computers
and IT. Not so long ago the use of calculators in math classes was forbid-
den. Later mathematical software for the solution of more complex tasks
(Mathematica, Maple, Matlab, Mathcad, SMath, Derive, etc.) was not rec-
ommended for use by students, (and of course was extremely expensive for
researchers).

Instructors who forbade the use of such tools were sure that understand-
ing the process of solving a given problem is the most important aspect of
learning mathematics. They thought that while studying, the final result is
less useful and less interesting than the method by which it is obtained. It
seemed, to them, that the absence of any individual mental effort on the com-
putational side of the problem turned the student into a computer appendage,
capable only of clicking to obtain the answer produced by a machine. These
kinds of opinions led to the use in practice sessions and seminars of specially
selected, simplified (and oftentimes contrived) examples which had been in-
vented long before the emergence of computers.

But today’s high school students and college students do not understand
this point of view and consider it outdated and unsustainable. Moreover,
they cannot imagine school without a computer.

There are somewhat approachable arguments offered by supporters of
the traditional pedagogy of mathematics. Some say for instance that oral
exercises and manual calculations provide good gymnastics for the mind. To
that, we say: well, in that case, the calculator can serve as a supplementary
sport equipment. At least occasionally, it can be used as an acceptable tool
for intermediate cumbersome calculations.

The most widespread argument is that we should be able to do calcu-
lations in our minds. If that is too difficult we are permitted do it with a
pencil and a paper. If that is not enough then we can use the calculator, and
so on. But, by analogy, if we cannot produce fire with friction then we can
use matches or lighters; if in the forest we can’t determine the direction of
north by looking at trees then we can use a compass or a navigator, and so
on. Unfortunately (or fortunately!) with the advance of civilization we have
forgotten how to make fire by friction and how to find the direction of north
by the moss on the trees. So we use the technical tools.
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Some teachers of arithmetic will never tire of repeating to children that
if they are able to count and compute quickly and accurately without a
calculator, then they will never be shortchanged. But this argument is no
longer valid today. Nowadays most of us (and our students!) have calculators
integrated into our smart phones or compact tablet computers.

Opponents of the use of any type of computers for learning mathematics
in schools and universities have their own, often hidden agenda.

Firstly, many school teachers and university professors, unfortunately,
simply do not know how to work with mathematical software. They have
mastered the computer at the office software level (word processing, spread-
sheet, e-mail, browsing the Internet). But they do not want to go further,
justifying it by the fact that, well, these programs are harmful to the learning
process (see above).

Secondly, the implementation of these programs in the educational pro-
cess requires a radical revision of the content and methods of teaching. Math-
ematics textbooks and collections of problems ought to be rewritten or at
least substantially reprocessed [18].

Thirdly, the above-mentioned computer programs are quite expensive.
They are not always affordable for schools and colleges. Additionally, such
programs need to be on personal computers (tablet PCs, smartphones) for
pupils and students to do their homework. However, most companies that
develop math programs give substantial discounts to educational institutions
and in some cases they share the program for free. (It is evident that, pupils
and students, who master the free program, will buy it for themselves, or
will ask their employers to buy the same program.)

Teachers should not complain about the high cost of programs or incorrect
work (if they deal with pirated copies [11]). They should look for ways to
solve the problem by direct contact with the software developers and their
dealers. In addition, there are free versions of some programs. For example,
the firm PTC - developer of the program Mathcad (www.ptc.com) - gives
the opportunity to work first with the full version of Mathcad Prime, and
then after a certain period, with its shorter version of Mathcad Express,
which still allows one to solve quite complex mathematical problems. Also,
the program SMath (“Russian” Mathcad) is available for free download from
www.smath.info.

www.ptc.com
www.smath.info
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The view expressed above was also presented in [13], which was devoted
to the teaching of physics. In this article we are concerned with mathematics.

2. Geometry

Several events prompted the authors to write this article. The first event
was when one of us helped his granddaughter solve the following problem in
mathematics: One side of the triangle has length 12 cm. The angle between
this side and the neighbor side of the triangle equals to 120◦. The side that
is opposite to this angle is equal to 28 cm. Find the length of the third side
c of the triangle and the distance h between the apex of the given angle and
the second side. Immediately he sat down at the computer, wrote the system
of six algebraic equations, and solved it without problems in Mathcad using
a solve block (see Figure 1).

Figure 1: The triangle problem - solution using a system of algebraic equations (Mathcad).
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When we put the initial approximations to the solution into the Mathcad
solve bloc, the program writes the simultaneous equations and calls the func-
tion Find, which returns the values of the unknowns. In the solution shown
in Figure 1, the KISS-principle1 approach to programming is displayed.

Of course, the problem could be reduced to five equations. For example,
we can replace y by −x. Then we can designate 180◦−α−β by z and reduce
the number of equations to four. You can even replace the two equations
involving sines by the single equation, b · sin(180◦ − α − β) = c · sin(β),
etcetera. But if we do so we shall obscure the matter. Replacement, leading
to a decrease in the number of equations, impairs understanding. And for
the computer, as opposed to a person, there’s not much difference between
five or six equations. If the computer struggles to solve a big number of
equations, then some simplification can help. But now we do not need that.

So, we have found a solution. You can verify this by substituting the
solution into the equation. You obtain an identity.

When the author showed this result to his granddaughter, she said that
such problems were not solved this way at school. Students had to apply
the cosine theorem, which they were learning for almost three months. The
grandfather did remember that there was such a theorem, but he had com-
pletely forgotten what it was. His granddaughter reminded him (in addition
he looked it up on http://en.wikipedia.org/wiki/Law_of_cosines) and
he rewrote the solution of the problem–see Figure 2 on the next page.

It was clear that granddaughter and her classmates are learning to solve
quadratic equations (that is the essence of the problem of our triangle),
but they are not allowed to use the computer or the Internet in order to
find solutions for systems of equations—linear and non-linear, algebraic and
differential (e.g. the differential equations discussed in [13]).

But many school and university problems in mathematics, physics, chem-
istry and other disciplines need solving systems of equations. It seems that
the student must understand the essence of a problem in math, physics or
chemistry. Then he must be able to construct a system of equations. Then he
can solve and check it by computer. But no! Pupils and students are forced
to memorize a bunch of rules and theorems, which are the standard solu-
tions of these equations and systems. Using the substitutions in our triangle

1KISS is an abbreviation of the English “Keep It Simple, Stupid”.

http://en.wikipedia.org/wiki/Law_of_cosines
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Figure 2: The triangle problem: the solution of the quadratic equation (Mathcad).

problem with six equations (Figure 1) we can get a single quadratic equation
describing the cosine theorem. But you do not need to do it yourself. You
can entrust the process to the computer.

The problem in Figure 1 is completely solved. The length of the third side
of the triangle and one of its heights were found. But the solution in Figure 2
is incomplete. You need to find the height of the triangle. In Figure 1 the
Pythagorean Theorem is used directly. Everyone knows the Pythagorean
Theorem, but not all of us know the cosine theorem. The solution process
displayed in Figure 1 is much more universal than the one in Figure 2. Any
triangle or even a polygon one can divide into separate right-angled triangles,
represent them by systems of equations and solve by computer.

We know a lot of students who are categorically prohibited to use the
computer to perform calculations, or for constructing a model of a particular
course project. Many teachers still say that students must do their work only
with pen and paper. But the computer allows us to abandon many of the
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“good old” problems and come up with some that are new, more complex,
more interesting and closer to real life.

The problem of the triangle goes back to ancient Greece to the heyday
of Euclidean geometry. At that time every year people had to measure and
share their land.

Earlier, education in Russia was divided into classical and real. The classi-
cal school of old Russia was focused on study of Latin and Greek languages.
The middle real schools were aimed at learning natural science problems.
But the echo of “classicism” in education is evident in the modern school
approach to the teaching of mathematics. Thus, the problem of the triangle
does not use modern methods of solution. We teach only those which the
ancient Greeks used. Is it good or bad? That is the question that we raise
in this article.

Modern computer methods must not be ignored at school. The fact that
schoolchildren and students ought to memorize a set of rules and theorems
must not prevent them from tackling more complex nonstandard tasks, where
the emphasis should be done on “mathematics, physics, chemistry, etc”.

The second event that prompted this article occurred as follows. A few
years ago, one of us had the opportunity to deliver lectures and to conduct
workshops on science at the evening department. Students were grownups
and quite mature. They worked in Moscow energy companies like engineers
but they had not the higher education. Fortunately, these students were very
good. They came to study in Moscow Power Engineering Institute, not only
to get the diploma, allowing them greater career progression. These students
needed the knowledge and greater understanding of the complex processes of
production, transmission and consumption of heat and electricity with which
they had to deal at work.

At first the course on Computer Science was taught in the usual way. But
this was not exactly what students needed and what they could learn. They
were not afraid of computers because they had long since mastered them at
their work. But they were very frightened of mathematical analysis: limits,
derivatives, integrals, and so on.

The math teacher and the first author decided to combine efforts and
help the students not just to learn the basics of Mathematics and Computer
Science, but also to get pleasure from it. We usually keep telling our students
that they should get not only the knowledge and skills. They also should
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get joy and satisfaction from study, as well as from any other difficult but
fruitful work. They should have fun. We want to tell all students: Even if
you have dreamed to become an artist or a pilot, but instead you attend the
Moscow Power Engineering Institute, do not worry! Make an effort - love
a school and your future specialty: enjoy! Without pleasure, even the most
prestigious and highly paid work can poison life.

3. Optimization

Let us return to mathematics and computers.

The first author decided to remake the syllabus of computer science,
or rather, change the list of examples that illustrate the development of
modern computer-based data processing. The students had a trouble with
mathematical analysis, because they hardly knew the basic theory of limits,
differentials, integrals, etc. So, it was difficult for students to apply their
knowledge of math even to solving the simplest problems. Also they had no
idea about use of these powerful math tools in their engineering work. The
implication was that applications of math to engineering problems would be
given later in special courses. The author decided to remedy this situation.
He proposed the solving some simple engineering problems connected with
the basic concepts of mathematical analysis using computer program.

These students often see large containers (tanks) of the circular cylindrical
shape for the storage of fuel oil (fuel for power plants) or water (working fluid
of the steam turbine generating units and the coolant for heat networks).
They stand at the territory of the Moscow Combined Heat and Power (CHP)
stations. Such tanks with gasoline or diesel fuel can be found at major gas
stations. Few people think about the proportions of such tanks, where one
and the same volume of liquid can be stored in either the high and narrow
or low and wide cylinders. Using mathematics and computer software let’s
show, that 2r = h when the surface area of such a container of a fixed volume
is minimized (where r is the cylinder radius and h is its height). We, like
students, can solve this problem using the program Mathcad [6, 12, 14] and
the tools of mathematics which students usually learn from their lessons on
differential calculus (see Figure 3 on the next page.)

The well-known formulas for the calculation of the volume V and the
total surface area S of the cylinder with base radius r and height h are well
known. Using the tools of symbolic computation in Mathcad, it is easy to
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Figure 3: The problem of a cylinder with a minimum surface area (Mathcad).

derive an expression for the total surface area S as a function of the variable
r and volume V, as well as for its derivative with respect to r.

Well known, the surface area reaches the desired minimum value at a
critical point where the derivative is zero or does not exist. The derivative
is defined everywhere except at r = 0, but a cylinder with zero radius is not
sensible. So, we’ll find the desired radius if we equate derivative to zero.
Mathcad helps us to find the only root of the equation dS/dr = 0. Common
sense (or a study of where the derivative changes the sign) says that this is
a desired value. The ratio h/r equals 2 (what we were going to show) and is
independent of volume V.
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And what is the optimal ratio of h/r in case of a conical shape container
(here r is the radius of the base of the cone)? Such conical silos are used to
store the crushed coal for combustion in a furnace of a boiler. This optimiza-
tion problem is solved here using Maple–another mathematical program–see
Figure 4 below.

Figure 4: The problem of a cone with a minimum surface area (Maple).

And what happens if the top cover of the cylinder is removed and the
cylinder is covered with a half sphere? And what happens if the cone has a flat
or a spherical cap? Students attacked these and other similar optimization
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problems for containers of various shapes with enthusiasm. As a result,
they have mastered the basics of mathematical analysis, as well as related
tools and Mathcad. They all got a kick out of this work. (These problems
and others are available on the site http://communities.ptc.com/groups/

optimisation-with-mathcad.)

The students notice several features of these problems while solving them
using the computer. Why does the formula for the volume of a cone have a
coefficient 1/3 (see the first operator in Figure 2) but not 1/2 or 1/4? This
fact we explain by imagining a cone, made in the style of children’s pyramid
of low cylinders with decreasing diameters. The volumes of the low cylinders
can be summed in order to obtain an approximate value of the volume of
a cone. Then, by reducing the heights of the cylinders, and by increasing
their number to infinity (we keep the constant volume) in the limit we get
the integral. And the coefficient 1/3 appears naturally when we calculate
the integral. By the way we remember that the sign of integral - a stretched
letter s - is the start letter of the Latin word for “sum”.

Let us return to reasons. There is one more situation that needs to be
discussed.

From time to time one of the authors teaches students to explore the
function and build the graph. It is one of the most complex mathematical
topics in the first semester. Usually teachers require the students to do that
“by hand”, because the students must know all the specific features of a
process. But much better it will be, if students check by computers the
calculation of limits and derivatives. You can also permit to draw a graph
by computer program instead of a sketch drawn in by hand.

Work of this nature gives undeniable positive effects. Student proceeds to
complex and unusual for him job psychologically relaxed. He does not “de-
ceive the teacher”, when he is trying to look for computer tips. He has not
fear that the job will not be done in time, or the answer will be wrong. This
allows him to focus on the essence of the problem, but not on the estima-
tion for the work. Students accustomed to the fact that complex multistep
calculations can and should be checked at every convenient stage. Because
it leads to a smaller loss of time to solve the problem correctly. And finally,
what is particularly valuable for the education of future engineers. With dis-
crepancies in the results of its own research and computer checks they should
decide who is wrong: human or computer.

http://communities.ptc.com/groups/optimisation-with-mathcad.
http://communities.ptc.com/groups/optimisation-with-mathcad.
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As a result of such a comprehensive study of the math problem students
not only get acquainted with various mathematical tools. They also realize
that all of these computer programs are done according to specific scenarios
based on numerical methods. The programs have certain restrictions on the
parameters and the region of use.

We have analyzed the use of mathematical computer programs by stu-
dents of our university and concluded that in the interaction of students with
the computers anarchy reigns.

Unsystematic, uncontrolled and accidental use of the math programs does
not lead to improvement of mathematical preparation or growth of achievers
[5]. In order to gain progress in learning math with the assistance of math
programs the students must use them under the direct guidance of the teacher
[3, 4].

The teachers on mathematics should allow students to use symbolic cal-
culators and computers, shifting the emphasis from the artificial exercises
to a deeper understanding of math tools and their practical application to
engineering.

Much of the time, students still learn mathematics using the style of text-
books and books of problems of the XVIII century. Yes, there are special
courses in higher mathematics with the use of modern computer math pro-
grams [14, 18]. But the majority of pupils and students continue to learn
according to curriculum and problems that were three hundred years ago.

With the development of computational tools of increased power and with
availability of computers and new programs, numerical methods for solving
problems should be treated on a par with analytical methods. Scientists
usually do so when they solve extremely difficult problems. Now the students
can do so when they solve ordinary math problems.

Figure 5 shows the solution of the problem of minimal surface of the cone
with hemispherical covering using a combination of analytical transforma-
tions (symbolic math) and numerical methods.

After we did calculations for the cylinder (Figure 3) and a single cone
(Figure 4) we can continue to investigate another shapes of tanks. We may
take a cone covered with a hemispherical top (Figure 5). Of course, it is very
interesting for students to derive a formula for the optimal ratio h/r for a
cone with a hemisphere. But symbolic mathematics does not always work
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Figure 5: The problem of a cone and a hemisphere with a minimum surface area (Math-
cad).

in case of more complicated problems. It also can give very cumbersome
solutions. In Figure 5 the problem of the cone covered with a hemispherical
top, is solved numerically for the volume of 10 m3. The answer is verified on
a graph of the function, which was derived using the symbolic mathematics
of Mathcad. A discussion of this problem and its analytical solution using
various mathematical software packages (Mathcad, Maple, Mathematica and
Derive) is available at the forum http://communities.ptc.com/message/

197522.

The question about the use of real tasks or abstract math examples re-
mains debatable as a hundred years ago [1, 15]. Primary school pupils learn
the basics of mathematics (arithmetic) using real examples. For instance:
“You have two apples in your pocket. Someone took one of them from you.
How many apples are left?”. Later, in high school and in college real-life

http://communities.ptc.com/message/197522
http://communities.ptc.com/message/197522


68 Mathematical Software and Teaching

examples are gradually replaced by abstract notions. You can’t say anything
about the nature of solutions of equations or systems of equations. The
“physics” of problems is completely ignored now.

During the last 30–40 years, there was a widespread transition from ana-
lytical solutions to numerical approximate methods in engineering. This was
due to the limited applicability of analytical methods and to development
of computer technology. Thirty years ago any particular problem had to be
solved only in a special computer laboratory. Today this can be done with
any smartphone. There are new and more complex tasks that smartphone
cannot solve. Such problems can be sent via the Internet for solutions on the
new supercomputer of the same data center.

But, we repeat, the teaching of mathematics at the Engineering Univer-
sity is still based on the math books in the style of three hundred years ago.
Teachers of mathematics must not ignore computer math tools.

4. Teaching Mathematics versus Computer Science

One more reason for this article: The students studied two parallel courses:
mathematics and computer science. The course Computer science was based
on the use of mathematical software (see http://twt.mpei.ac.ru/ochkov/

Potoki.htm). At a consultation before an exam in computer science students
admitted that they got bad results on the examination on linear algebra.
The matter is, that one of the aims of Linear Algebra is to solve systems
of linear algebraic equations. Analyzing students’ failures on the exam, we
used Mathcad and explored a system of three linear equations. They were
provided with geometric interpretations (see Figures 6, 7, 8).

Note. The expression rank(A) = rank(A1) = 1 does not mean that the
ranks of A and A1 are equal to one, that means the equality of ranks. It is
a Boolean expression for true fact.

Figures 6,7, and 8 (Mathcad) show three cases that can appear when we
solve systems of three (or more) of linear algebraic equations. An infinite
number of solutions (three planes intersect along a straight line - Figure
6). No solutions (three planes intersect only in pairs - Figure 7). A unique
solution (three planes intersect in one point - Figure 8). After such analysis of
the problem with its graphical interpretation the students told, that if they
saw these fragments earlier, then results would be better. The computer

http://twt.mpei.ac.ru/ochkov/Potoki.htm
http://twt.mpei.ac.ru/ochkov/Potoki.htm
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Figure 6: Linear algebraic solution in Mathcad - an infinite number of solutions.

math model helps students to understand and to memorize the theorems for
linear algebraic equations.

By the way, the establishment and implementation of a mathematical
model for a single power supply of a village, town, or the country as a whole,
requires constructing and solving linear algebraic equations with dozens or
even hundreds of thousands of unknowns. Large-scale systems are solved by
numerical methods of linear algebra, the study of which is not included in a
standard course in linear algebra. Such systems can be solved only by means
of math computer programs.

The ability to visualize solutions, using static pictures or even anima-
tions, is very important. It helps to understand the math theory. Modern
math programs provide users with easy and convenient means of animation.
For example, the forum Planet PTC contains pages on which are placed the
animation solutions of some typical problems of mathematics - see http://

http://communities.ptc.com/groups/animation-of-math-methods-in-mathcad
http://communities.ptc.com/groups/animation-of-math-methods-in-mathcad
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Figure 7: Linear algebraic solution in the medium Mathcad–no solutions.

communities.ptc.com/groups/animation-of-math-methods-in-mathcad.
At the same forum http://communities.ptc.com there are a lot of three-
dimensional models that have been created in CAD package, Creo (previously
called PRO/Engineer), and plotted in Mathcad.

The main goal of mathematical education should be nurturing skills math-
ematically explore real phenomena [2]. Math should not be reduced to
recipes. More precisely, the essence of learning math is not a memorizing
of theorems and rules. Though they are extremely important. Most of the
population never needs a theoretical justification of their actions. People just
do.

For that purpose they need to have confidence that everything turns out
according to the laws of nature. But how to see the effect of these laws?
Mathematics and computer math models help.

For most of the people need not lemmas or formulas. The mathematics
must be alive. And formulas can be delivered to computers.

For example, an expert on the packaging of goods in cubistic boxes seeks
for optimal way of cutting cardboard. Will he learn a complex mathematical
theorem proving that a cube has exactly eleven scans? Most likely, he’ll
understand this, seeing math video [7]. Then he makes good choose.

http://communities.ptc.com/groups/animation-of-math-methods-in-mathcad
http://communities.ptc.com/groups/animation-of-math-methods-in-mathcad
http://communities.ptc.com
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Figure 8: Linear algebraic solution in the medium Mathcad–the only solution.

Lecturer in mathematics needs to deliver many preliminary lectures, be-
fore he can prove a well known property of a parabolic antenna. But if future
student’s profession is not mathematics, then it is enough to show him the
math short film [9].

The proof of the theorem named after a French mathematician G. Monge
is not easy. But the result of this theorem is often useful in architecture.
How can students get acquainted with it? The most effective way is [8]. The
same applies to the continuity problems [10].

But we must remember that, despite the existence of a plurality of digital
and dynamic representations of mathematical objects, the main problem is
the development of mental abilities of our students [17].
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5. Conclusions

Conservative colleagues say that the calculator and the computer are the
culprits behind poor math knowledge of pupils and students. In particular,
it is alleged that calculator and computer can manipulate only decimal frac-
tions, but the arithmetic should use simple fractions. This is a strong reason
for future mathematicians, but not for all others. The modern student always
gets a calculator at hand, if he can’t calculate orally. He does not understand
why he must learn to use these simple fractions.

What is there to argue, or, rather, to add?

When the authors were getting their education–secondary and higher
education–not more than 30% of pupils went to study in the universities.
Now, more than 90% of graduates of secondary schools want to gain the
higher education. It isn’t bad or good, it’s a reality. What kind of mathe-
matical education can we have in such circumstances? We try to analyze the
problem.

And what about simple and decimal fractions? Mathcad has tools to
work with simple fractions and, if desired, they can be successfully used in
elementary school. We get the main effect when, working with simple frac-
tions, we look for the greatest common divisor (GCD) of the denominators.
In Mathcad this is a function, called “gcd”. Furthermore, in Mathcad one
can decompose a number into prime factors (e.g. 69 = 3 · 23 and 57 = 3 · 19.
Figure ?? shows how you can semi-automatically correctly fold two simple
fractions in Mathcad. It also shows the operator panel “Calculator”, which
allows having a number in the form of Mixed Number. This allows having a
very productive way to work with simple fractions in Mathcad. One can use
it even in the early grades of school.

Some of our colleagues admit that a computer is useful for lectures on
mathematics. But they do not allow the modern mathematical software
packages that we speak about in the article.

There is one more, psychological reason to involve the computer to the
teaching of math.

It isn’t a secret that teachers of mathematics for many pupils and students
are not only “excellent teachers”, but also “torturers”, that force students
to memorize complicated theorems and to perform mental arithmetic. Many
people still have nightmares about mathematical instruments of torture. To
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Figure 9: Work in Mathcad with simple fractions.

avoid this computer can take the routine math work (remove the tedious side
of mathematics), allowing the teacher and students to create something more
fascinating.

1. Advanced mathematical computer programs allow using a fresh ap-
proach to the teaching of mathematics in schools and universities, tak-
ing into account the attraction of pupils and students to computers.

2. By means of graphics and animation, one can significantly increase
the understanding of pupils and students of the basic concepts and
theorems of mathematics.

3. Modern information technologies can transform and change the tradi-
tional solutions of mathematical problems.

4. In order to make progress in the influence of the computer to the process
of learning mathematics the teacher must exercise direct guidance.
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