МЕТОД ПОДБОРА ПОСТРОЕНИЯ ЧАСТНОГО РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. Подробнее

 

ОГЛАВЛЕНИЕ ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ ПОЛЕЗНЫЕ ССЫЛКИ

Высшая математика

  Обыкновенные дифференциальные уравнения и системы

 Обыкновенные дифференциальные уравнения. Основные понятия

 Системы ОДУ. Основные понятия

 Связь ОДУ высших порядков и систем ОДУ

  ОДУ 1-го порядка

  ОДУ высших порядков

  ОДУ высших порядков. Понижение порядка

  Линейные ОДУ n-го порядка

  Линейная зависимость и линейная независимость системы функций

  Структура решения линейного ОДУ n-го порядка

  Линейные ОДУ с постоянными коэффициентами

 Решение однородного уравнения с постоянными коэффициентами

 Метод подбора построения частного решания неоднородного уравнения

 Уравнение Эйлера

  Системы дифференциальных уравнений

  Численные методы решения ОДУ

Частное решение y*(x) можно найти методом подбора, если правая часть уравнения — квазимногочлен — функция вида

f(x) = exp(αx)(Mm(x)cos(βx) + Nn(x)sin(βx)).

Здесь Mm(x) — многочлен степени m, Nn(x) — многочлен степени n, α и β — действительные числа.

Метод подбора вычисления частного решения линейного неоднородного уравнения с квазимногочленом в правой части состоит в следующем.

Внимательно смотрим на правую часть уравнения и записываем число α ± βi.

Затем составим характеристическое уравнение однородного уравнения и найдем его корни. Возможны два случая: среди корней характеристического многочлена нет корня, равного числу α ± βi (нерезонансный случай) и среди корней характеристического многочлена есть r корней, равных числу α ± βi ( резонансный случай).

Рассмотрим нерезонансный случай (среди корней характеристического многочлена нет корня, равного числу α ± βi) . Тогда частное решение уравнения будем искать в виде

y*(x) = exp(αx)(Pk(x)cos(βx) + Qk(x)sin(βx)),

где Pk(x) и Qk(x) — многочлены степени k = max(n,m) с неизвестными коэффициентами,

Pk(x) = pkxk + pk-1xk-1 + ... + p1x + p0, Qk(x) = qkxk + qk-1xk-1 + ... + q1x + q0.

Для того чтобы найти неизвестные коэффициенты многочленов Pk(x) и Qk(x) , подставим y*(x) = exp(αx)(Pk(x)cos(βx) + Qk(x)sin(βx)) в уравнение и приравняем коэффициенты при

exp(αx)cos(βx), exp(αx)sin(βx), xexp(αx)cos(βx), xexp(αx)sin(βx),  x2exp(αx)cos(βx), x2exp(αx)sin(βx), ...,   xkexp(αx)cos(βx), xkexp(αx)sin(βx).

Доказано, что полученная таким образом система 2k + 2 уравнений относительно 2k + 2 неизвестных имеет единственное решение.

Рассмотрим резонансный случай (среди корней характеристического многочлена есть r корней, равных числу α ± βi) . Тогда частное решение уравнения будем искать в виде

y*(x) = exp(αx)(Pk(x)cos(βx) + Qk(x)sin(βx))xr,

где Pk(x) и Qk(x) — многочлены степени k = max(n,m) с неизвестными коэффициентами.

Для того чтобы найти неизвестные коэффициенты многочленов Pk(x) и Qk(x) , подставляем y*(x) = exp(αx)(Pk(x)cos(βx) + Qk(x)sin(βx))xr в уравнение и приравниваем коэффициенты при

exp(αx)cos(βx), exp(αx)sin(βx), xexp(αx)cos(βx), xexp(αx)sin(βx),  x2exp(αx)cos(βx), x2exp(αx)sin(βx), ...,   xkexp(αx)cos(βx), xkexp(αx)sin(βx).

 

  Примеры  
© МЭИ (ТУ) 2007